SEARCH
NEW RPMS
DIRECTORIES
ABOUT
FAQ
VARIOUS
BLOG
DONATE


YUM REPOSITORY

 
 

MAN page from openSUSE Leap 42 blas-man-3.4.2-3.6.1.noarch.rpm

chemm.f

Section: LAPACK (3)
Updated: Wed Oct 17 2018
Index 

NAME

chemm.f -  

SYNOPSIS


 

Functions/Subroutines


subroutine CHEMM (SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
CHEMM  

Function/Subroutine Documentation

 

subroutine CHEMM (characterSIDE, characterUPLO, integerM, integerN, complexALPHA, complex, dimension(lda,*)A, integerLDA, complex, dimension(ldb,*)B, integerLDB, complexBETA, complex, dimension(ldc,*)C, integerLDC)

CHEMM Purpose:

 CHEMM  performs one of the matrix-matrix operations    C := alpha*A*B + beta*C, or    C := alpha*B*A + beta*C, where alpha and beta are scalars, A is an hermitian matrix and  B and C are m by n matrices.


 

Parameters:

SIDE

          SIDE is CHARACTER*1           On entry,  SIDE  specifies whether  the  hermitian matrix  A           appears on the  left or right  in the  operation as follows:              SIDE = 'L' or 'l'   C := alpha*A*B + beta*C,              SIDE = 'R' or 'r'   C := alpha*B*A + beta*C,


UPLO

          UPLO is CHARACTER*1           On  entry,   UPLO  specifies  whether  the  upper  or  lower           triangular  part  of  the  hermitian  matrix   A  is  to  be           referenced as follows:              UPLO = 'U' or 'u'   Only the upper triangular part of the                                  hermitian matrix is to be referenced.              UPLO = 'L' or 'l'   Only the lower triangular part of the                                  hermitian matrix is to be referenced.


M

          M is INTEGER           On entry,  M  specifies the number of rows of the matrix  C.           M  must be at least zero.


N

          N is INTEGER           On entry, N specifies the number of columns of the matrix C.           N  must be at least zero.


ALPHA

          ALPHA is COMPLEX           On entry, ALPHA specifies the scalar alpha.


A

          A is COMPLEX array of DIMENSION ( LDA, ka ), where ka is           m  when  SIDE = 'L' or 'l'  and is n  otherwise.           Before entry  with  SIDE = 'L' or 'l',  the  m by m  part of           the array  A  must contain the  hermitian matrix,  such that           when  UPLO = 'U' or 'u', the leading m by m upper triangular           part of the array  A  must contain the upper triangular part           of the  hermitian matrix and the  strictly  lower triangular           part of  A  is not referenced,  and when  UPLO = 'L' or 'l',           the leading  m by m  lower triangular part  of the  array  A           must  contain  the  lower triangular part  of the  hermitian           matrix and the  strictly upper triangular part of  A  is not           referenced.           Before entry  with  SIDE = 'R' or 'r',  the  n by n  part of           the array  A  must contain the  hermitian matrix,  such that           when  UPLO = 'U' or 'u', the leading n by n upper triangular           part of the array  A  must contain the upper triangular part           of the  hermitian matrix and the  strictly  lower triangular           part of  A  is not referenced,  and when  UPLO = 'L' or 'l',           the leading  n by n  lower triangular part  of the  array  A           must  contain  the  lower triangular part  of the  hermitian           matrix and the  strictly upper triangular part of  A  is not           referenced.           Note that the imaginary parts  of the diagonal elements need           not be set, they are assumed to be zero.


LDA

          LDA is INTEGER           On entry, LDA specifies the first dimension of A as declared           in the  calling (sub) program. When  SIDE = 'L' or 'l'  then           LDA must be at least  max( 1, m ), otherwise  LDA must be at           least max( 1, n ).


B

          B is COMPLEX array of DIMENSION ( LDB, n ).           Before entry, the leading  m by n part of the array  B  must           contain the matrix B.


LDB

          LDB is INTEGER           On entry, LDB specifies the first dimension of B as declared           in  the  calling  (sub)  program.   LDB  must  be  at  least           max( 1, m ).


BETA

          BETA is COMPLEX           On entry,  BETA  specifies the scalar  beta.  When  BETA  is           supplied as zero then C need not be set on input.


C

          C is COMPLEX array of DIMENSION ( LDC, n ).           Before entry, the leading  m by n  part of the array  C must           contain the matrix  C,  except when  beta  is zero, in which           case C need not be set on entry.           On exit, the array  C  is overwritten by the  m by n updated           matrix.


LDC

          LDC is INTEGER           On entry, LDC specifies the first dimension of C as declared           in  the  calling  (sub)  program.   LDC  must  be  at  least           max( 1, m ).


 

Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

November 2011

Further Details:

  Level 3 Blas routine.  -- Written on 8-February-1989.     Jack Dongarra, Argonne National Laboratory.     Iain Duff, AERE Harwell.     Jeremy Du Croz, Numerical Algorithms Group Ltd.     Sven Hammarling, Numerical Algorithms Group Ltd.


 

Definition at line 192 of file chemm.f. 

Author

Generated automatically by Doxygen for LAPACK from the source code.


 

Index

NAME
SYNOPSIS
Functions/Subroutines
Function/Subroutine Documentation
subroutine CHEMM (characterSIDE, characterUPLO, integerM, integerN, complexALPHA, complex, dimension(lda,*)A, integerLDA, complex, dimension(ldb,*)B, integerLDB, complexBETA, complex, dimension(ldc,*)C, integerLDC)
Author

This document was created byman2html,using the manual pages.